Kernel Quantum Probability Library
The KQP library aims at providing tools for working with quantums probabilities
Public Member Functions
kqp::QPConstraints< Scalar > Class Template Reference

#include <qp_approach.inc.hpp>

Inheritance diagram for kqp::QPConstraints< Scalar >:
kqp::cvxopt::QPMatrix< KQP_REAL_OF(Scalar)>

Public Member Functions

typedef KQP_REAL_OF (Scalar) Real
 
 QPConstraints (Index n, Index r, const KQP_VECTOR(Real)&nu)
 
auto get (const KQP_VECTOR(Real)&x, Index i) const -> decltype((x.segment(i *n, n)))
 Get segments of size n (i.e. number of pre-images)
 
auto get (KQP_VECTOR(Real)&x, Index i) const -> decltype((x.segment(i *n, n)))
 
virtual void mult (const KQP_VECTOR(Real)&x, KQP_VECTOR(Real)&y, bool trans=false) const
 
virtual Index rows () const
 
virtual Index cols () const
 
- Public Member Functions inherited from kqp::cvxopt::QPMatrix< KQP_REAL_OF(Scalar)>
virtual void mult (const KQP_VECTOR(KQP_REAL_OF(Scalar))&x, KQP_VECTOR(KQP_REAL_OF(Scalar))&y, bool adjoint=false) const =0
 Computes Q * x and stores the result in y (y might be the same as x)
 

Detailed Description

template<typename Scalar>
class kqp::QPConstraints< Scalar >

Multiplying with matrix G

Real case:

 -G1          -Id
    ...       -Id
         -Gr  -Id
 G1           -Id
    ...       -Id
          Gr  -Id

where Gr is \( nu_i * Id_n \) (real case) or \( nu_i * [ Id_n, Id_n; Id_n -Id_n] \) of size 2nr x n (r+1)


The documentation for this class was generated from the following file: